Advanced Calculus

Midterm Exam

- 1. Let $\{a_k\}$ be a sequence defined recursively by $a_1 = \sqrt{3}$, and $a_{k+1} = \sqrt{3a_k}$, for k = 1, 2, ...
 - (a) (10 points) Show by induction that (i) $a_k < 3$ and (ii) $a_k < a_{k+1}$ for all *k*.
 - (b) (10 points) Show that $\lim_{k \to \infty} a_k$ exists and evaluate it.
- 2. Let $S = \{(x, y) \in \mathbb{R}^2 \mid x, y \in \mathbb{Q}\}.$
 - (a) (5 points) Find S', the set of all accumulation points of S. Justify your answer.
 - (b) (5 points) Find ∂S , the set of all boundary points of S. Justify your answer.
- 3. (10 points) Show that the set $\{(x, y) \in \mathbb{R}^2 \mid f(x, y) = x y + 1 = 0\}$ is closed in \mathbb{R}^2 . [**Hint:** You may use the fact that f(x, y) = x - y + 1 is a continuous function on \mathbb{R}^2 .]
- 4. (20 points) Let $S \subset \mathbb{R}^n$, $\mathbf{a} \in S$, and $f : S \to \mathbb{R}^n$. Show that the following are equivalent.
 - (a) f is continuous at **a** in the sense of ε - δ definition, i.e. For each $\varepsilon > 0$ there exists a $\delta > 0$ such that if $|\mathbf{x} \mathbf{a}| < \delta$ then $|f(\mathbf{x}) f(\mathbf{a})| < \varepsilon$.
 - (b) For any sequence of points $\{\mathbf{x}_k\}$ in *S* that converges to **a**, the sequence $\{f(\mathbf{x}_k)\}$ converges to $f(\mathbf{a})$. [**Hint:** For (b) \Rightarrow (a), you may want use a proof by contradiction.]
- 5. A set $S \subset \mathbb{R}^n$ is called pathwise connected if for any points x, y in S there is a continuous map $\mathbf{f} : [0, 1] \to \mathbb{R}^n$ such that $\mathbf{f}(0) = x, \mathbf{f}(1) = y$, and $\mathbf{f}(t) \in S$ for all $t \in [0, 1]$.
 - (a) (10 points) Let $B(r, \mathbf{0}) = {\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}|| < r}$ be the ball of radius *r* about the origin. Show that $B(r, \mathbf{0})$ is pathwise connected in \mathbb{R}^n .
 - (b) (10 points) Show that if $S \subset \mathbb{R}^n$ is pathwise connected, then S is connected.
- 6. (10 points) Suppose that $\mathbf{f}: S \to \mathbb{R}^m$ and $\mathbf{g}: S \to \mathbb{R}^m$ are both uniformly continuous on *S*. Show that $\mathbf{f} + \mathbf{g}$ is uniformly continuous on *S*.
- 7. (10 points) Suppose $S \subset \mathbb{R}^n$ is compact, $f: S \to \mathbb{R}$ is continuous, and f(x) > 0 for every $x \in S$. Show that there is a number c > 0 such that $f(x) \ge c$ for every $x \in S$.