1. Let $\left\{a_{k}\right\}$ be a sequence defined recursively by $a_{1}=\sqrt{3}$, and $a_{k+1}=\sqrt{3 a_{k}}$, for $k=1,2, \ldots$.
(a) (10 points) Show by induction that (i) $a_{k}<3$ and (ii) $a_{k}<a_{k+1}$ for all $k$.
(b) (10 points) Show that $\lim _{k \rightarrow \infty} a_{k}$ exists and evaluate it.
2. Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x, y \in \mathbb{Q}\right\}$.
(a) (5 points) Find $S^{\prime}$, the set of all accumulation points of $S$. Justify your answer.
(b) (5 points) Find $\partial S$, the set of all boundary points of $S$. Justify your answer.
3. (10 points) Show that the set $\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=x-y+1=0\right\}$ is closed in $\mathbb{R}^{2}$.
[Hint: You may use the fact that $f(x, y)=x-y+1$ is a continuous function on $\mathbb{R}^{2}$.]
4. (20 points) Let $S \subset \mathbb{R}^{n}, \mathbf{a} \in S$, and $f: S \rightarrow \mathbb{R}^{n}$. Show that the following are equivalent.
(a) $f$ is continuous at a in the sense of $\varepsilon$ - $\delta$ definition, i.e. For each $\varepsilon>0$ there exists a $\delta>0$ such that if $|\mathbf{x}-\mathbf{a}|<\delta$ then $|f(\mathbf{x})-f(\mathbf{a})|<\varepsilon$.
(b) For any sequence of points $\left\{\mathbf{x}_{k}\right\}$ in $S$ that converges to $\mathbf{a}$, the sequence $\left\{f\left(\mathbf{x}_{k}\right)\right\}$ converges to $f(\mathbf{a})$. [Hint: For $(\mathrm{b}) \Rightarrow(\mathrm{a})$, you may want use a proof by contradiction. ]
5. A set $S \subset \mathbb{R}^{n}$ is called pathwise connected if for any points $x, y$ in $S$ there is a continuous map $\mathbf{f}:[0,1] \rightarrow$ $\mathbb{R}^{n}$ such that $\mathbf{f}(0)=x, \mathbf{f}(1)=y$, and $\mathbf{f}(t) \in S$ for all $t \in[0,1]$.
(a) (10 points) Let $B(r, \mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|<r\right\}$ be the ball of radius $r$ about the origin. Show that $B(r, \mathbf{0})$ is pathwise connected in $\mathbb{R}^{n}$..
(b) (10 points) Show that if $S \subset \mathbb{R}^{n}$ is pathwise connected, then $S$ is connected.
6. (10 points) Suppose that $\mathbf{f}: S \rightarrow \mathbb{R}^{m}$ and $\mathbf{g}: S \rightarrow \mathbb{R}^{m}$ are both uniformly continuous on $S$. Show that $\mathbf{f}+\mathbf{g}$ is uniformly continuous on $S$.
7. (10 points) Suppose $S \subset \mathbb{R}^{n}$ is compact, $f: S \rightarrow \mathbb{R}$ is continuous, and $f(x)>0$ for every $x \in S$. Show that there is a number $c>0$ such that $f(x) \geq c$ for every $x \in S$.
